MicroCART: IRP Presentation

MicroCART: Microprocessor Controlled Aerial Robotics Team

Daniel Zaucha, Jonah Upah, Ryan Lowe, Yi Hang Ang

Advisor/Client: Dr. Phillip Jones Team Website: <u>https://sdmay25-32.sd.ece.iastate.edu</u>

Project Overview

- Ongoing project revolving around the development of a quadcopter platform utilized by Iowa State students and controls systems researchers
- CPRE 4880 Lab 4
- Fixing known issues in the MicroCART application.
- Refine documentation
- Enhance data collection capabilities and data representation on the GUI.

Intended Users

- CPRE 4880 Students
 - Complete Lab 4.
- Project Advisor / Class TA
 - Need to be able to assist with Lab 4.
- Prospective ISU Students
 - Perform demos for high school students.
- Successor Project Teams
 - Future teams can brought up to speed with ease.

Technologies Utilized

- Bitcraze CrazyFlie Drone
 - Micro quadcopters manufactured by Bitcraze.
 - Drones used by CPRE 4880 students to complete Lab 4.
- Virtual Machine
 - Project environment inside a virtual machine.
 - Used as a development environment for Lab 4.
- Arduino
 - Used an Arduino for the test stand tracker.

CrazyFlie mini-quadcopter

IOWA STATE UNIVERSITY

Project Goals

- Overall goal for our project this year has been focused solely on the improvement of Lab 4.
 - In previous years, this lab has frequently experienced issues such as VM/GUI lagging and crashing.
 - Mismanagement of system resources.
 - Unreliable connection to drone.
 - Improve the performance of the VM/GUI.
 - Limit the amount of crashes and non user-related problems.

Project Goals

- Utilize the test stand sensor
 - Enhance data collection capabilities and data representation on the GUI.
 - Functions as an external sensor relative to the CrazyFlie's onboard sensors
 - Allows external validation of the onboard sensor data

Similar looking Sensor [3] Part Number of test stand sensor: MA3-P12-125-2

IOWA STATE UNIVERSITY

Project Goals

- Refining Documentation
 - Revise lab instructions and terminology.
 - Include information about current implementation.
 - Correcting inaccurate documentation of key terms.
 - Update the knowledge base for future teams.
 - Highlight key changes implemented by the team.
 - Test stand documentation
 - Provide instructions for editing CrazyFlie firmware.
 - Starting points in the Git Repo.

7

Project Requirements

- CPRE 4880 Lab 4
 - Students should be able to complete the lab without frequent crashes or performance issues.
 - Students should have updated information available to them through either the lab documentations or CPRE 4880 Wiki page.
 - Students should have access to functional lab equipment
 - A Virtual Machine with a fully operational lab environment should be deployed on lab computers.
 - Sufficient functional drones should be available for use

Project Requirements

- Documentation
 - Any changes made to the MicroCART infrastructure should be documented for future team reference.
 - Keep all information up to date by revising anything outdated or inaccurate.
 - Create/Update documentation to enable future teams to get up to speed within 4-6 weeks

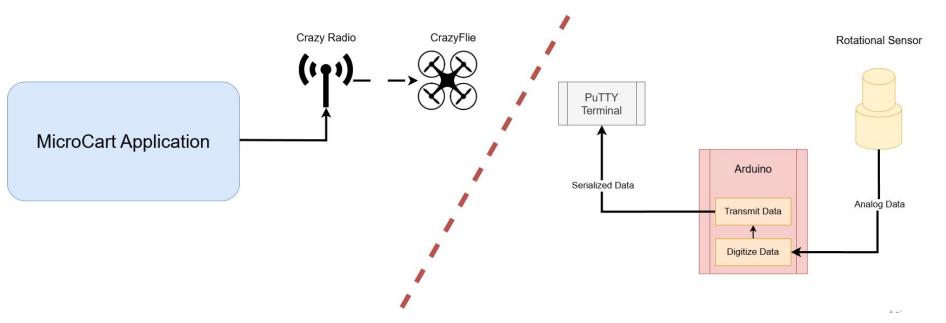
Risks

- Deployment of the VM for Lab 4
 - No changes to the VM can be made after deployment.
- Test stand tracker
 - If not dismounted from VM, caused an entire system crash.
- Maintaining the health of the lab equipment
 - Ideally want at least 12 working quadcopters and radio dongles for lab use.

Mitigation

- Deployment of the VM for Lab 4
 - Acted as TAs during lab periods and helped fix any issues that came up during lab.
- Test stand tracker
 - Emphasized in the lab manual and Discord server for students to dismount before shutting down GUI
- Maintaining the health of the lab equipment
 - Constantly updated a health status sheet for the quadcopters
 - Purchased broken parts to fix drones / had assistance from ETG to fix broken parts

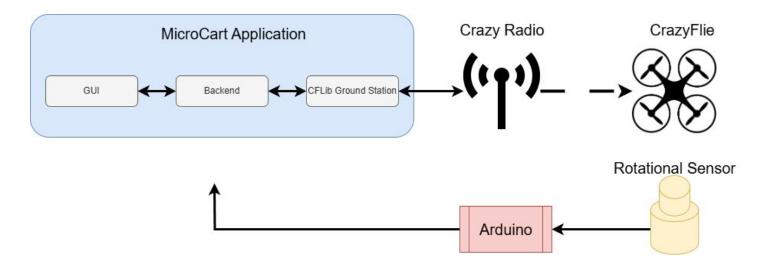
Continual Maintenance Resource/Cost Estimation


- Expected: 12 sets of operational lab equipment
- Single Set:
 - Crazyflie
 - 2x Batteries
 - Crazyradio

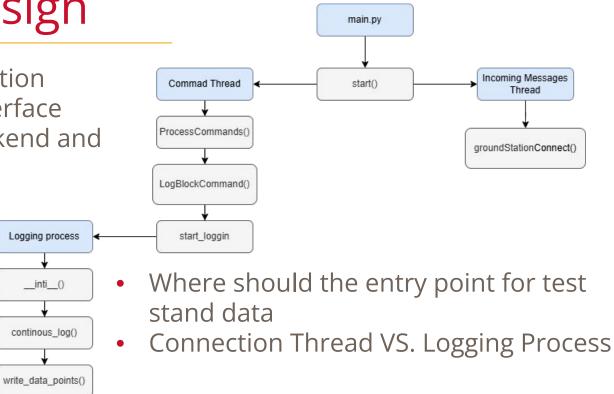
Parts	Amount	Cost (Ignoring Taxes)[1][2]			
Crazyradio 2.0	x7	\$43/unit \$301.00			
250mAh LiPo Battery	x13	\$6.50/unit \$84.50			
USB Extension Cord	x8	\$11.39/2 units \$45.56			
Total Cost: <mark>\$431.06</mark>	Remaining Budget: \$68.94	Real and Estimate Difference: Cost \$203.86 more than Estimate			

IOWA STATE UNIVERSITY

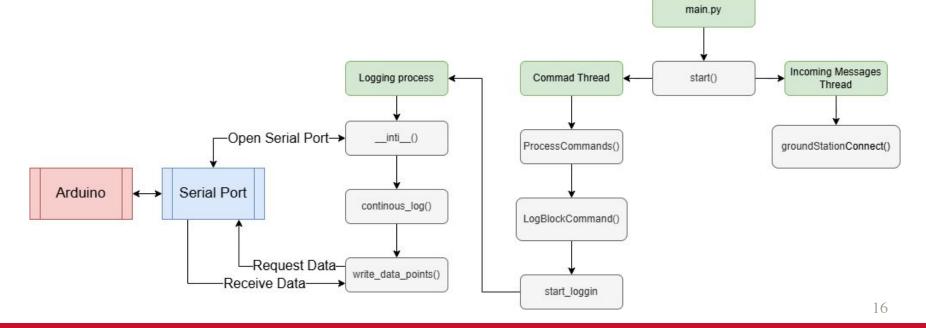
Initial Design


• Test stand Data Pipeline

IOWA STATE UNIVERSITY

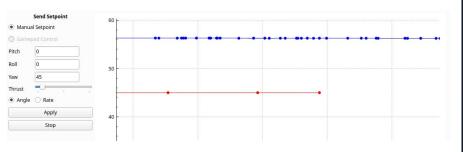

Initial Design

• Entry Point for Test stand Data



MicroCART | sdmay25-32

- CFLib Ground station
- This acts as a interface between the backend and the CFLib.



• Test Stand Integration

IOWA STATE UNIVERSITY

- Optimization of Application
 - Usage of busy waits
 - Duplication of logging process

PID	USER	PR	NI	VIRT	RES	SHR	S	%CPU	SMEM	TIME+ COMMAND
2707	bitcraze	20	θ	6284	1900	1736	R	77.3	0.0	91:39.59 ./BackEnd
2826	bitcraze	20	0	797032	23948	4700	R	54.3	0.1	0:05.73 python3 main.py 50
2675	bitcraze	20	0	797032	34244	15020	S	45.0	0.2	43:04.98 python3 main.py 50
2824	bitcraze	20	0	797032	23940	4700	S	41.3	0.1	0:11.82 python3 main.py 50
2741	bitcraze	20		797032	23676	4436	S	34.0	0.1	62:49.64 python3 main.py 50
2738	bitcraze	20	0	797032	23676	4436	S	33.7	0.1	4:36.41 python3 main.py 50
2708	bitcraze	20		1713932	175776	92804	s	32.3	0.9	2:30.54 ./GroundStation
2735	bitcraze	20		731496	23624	4436	S	29.3	0.1	64:46.72 python3 main.py 50
2742	bitcraze	20	0	797032	23664	4428	s	18.3	0.1	61:56.81 python3 main.py 50
1050	root	20		1196548	127260	43088	s	4.3	0.7	LIGTIDO / GDI/ CLU/ Korg/ Korg
1633	bitcraze	20	0	388112	39612	30028	s	1.0	0.2	0:30.60 /usr/bin/xfce4-termina
1454	bitcraze	20	0	1263276	93176	66512	S	0.3	0.5	0:12.97 xfwm4replace
1470	bitcraze	20		229092	20508	14736	S	0.3	0.1	0:00.31 xfsettingsd
1703	bitcraze	20	0	494012	70264	38204	S	0.3	0.4	0:05.90 /usr/bin/geditgappl
1	root	20	0	167308	11464	8564	S	0.0	0.1	0:02.05 /sbin/init splash
2	root	20	A	Θ	Ø	A	S.	ΘΘ	0.0	0.00 01 [kthreadd]

IOWA STATE UNIVERSITY

IOWA STATE UNIVERSITY

- Optimization of Develop Environment
 - VM resources
 - Limit LLVMpipes
 - Deployment process

Challenges

- The whole group had problems getting brought up to speed with the project
 - Did not have enough meeting times that worked for everyone 1st semester.
- Git repository has ~8 years of development, making it difficult to grasp.
- Gaps in documentation from earlier MicroCART work.
- Difficulties with Hardware

MicroCART | sdmay25-32

Solutions

- Creating handover documents
 - Making it easier for next year's team to get brought up to speed
- Cleaning up the Git repository to make it more clear what parts are relevant
- Posting videos on navigating the Git repository
- Issues, causes, and solutions documented

MicroCART | sdmay25-32

Testing & Feedback

- Our testing of the entire system was done by completing Lab 4 from a students perspective.
- Testing of the test stand was done by comparing the test stand data with the on-board drone sensor
- As part of Lab 4, we also ask students for feedback to help with future implementations:
 - Some TODO's in part 2 need to be more clear for what it wants.
 - Have a way to test part 2 without having to flash the drone.
 - May be too much documentation, for part 1 especially.
 - Change battery connector so that the wires do not break.

MicroCART | sdmay25-32

Results

- Managed to reduce CPU utilization from 100% to around 60%-70%
 - Allowed for much smoother logging and stability of the VM as a whole
- Successfully implemented a test stand tracker before the deployment of Lab 4

Results

- Had a successful deployment of Lab 4
 - "Smoothest ever deployment of the lab", according to Dr. Jones, Client & CPR E 4880 Teacher
 - All lab groups were able to complete the lab successfully
- Collected feedback from students to pass on to next years team for their reference
- Made changes to the Lab 4 manual to improve readability

Conclusion

- Individual Contributions
 - Jonah: Arduino integration, Test stand logging, VM/GUI performance improvements
 - Yi: Test stand logging, Lab 4 firmware changes and implementations, VM/GUI performance improvements
 - Ryan: Lighthouse research, Lab 4 testing, troubleshooting, documentation
 - Daniel: Bug testing/fixing/recording, Equipment maintenance, Lighthouse system